

SGLT-2 INHIBITORS FOR TREATMENT OF HEART FAILURE AND CHRONIC KIDNEY DISEASE

Emily K. McCoy, PharmD, BCACP Associate Clinical Professor Auburn University Harrison School of Pharmacy and Adjunct Assistant Professor, Department of Internal Medicine University of South Alabama College of Medicine

FACULTY DISCLOSURE/CONFLICT OF INTEREST

HARRISON School of Pharmacy

I, Emily McCoy, have no actual or potential conflict of interest in relation to this program.

- Evaluate the current evidence for use of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in the treatment of heart failure and/or chronic kidney disease.
- Discuss pertinent guideline recommendations regarding the use of SGLT2i in patients with heart failure and/or chronic kidney disease.
- Identify patients with heart failure and/or chronic kidney disease who would be appropriate candidates for treatment with SGLT2i therapy.

ABBREVIATIONS

- ACC: American College of Cardiology
- ► ADR: adverse drug reaction
- AE: adverse effects
- ► AF: atrial fibrillation
- ► AHA: American Heart Association
- ASCVD: atherosclerotic cardiovascular disease
- CAD: coronary artery disease
- CHD: coronary heart disease
- CHQ-SAS: Chronic Heart Failure Questionnaire Self-Administered

- CKD: chronic kidney disease
- CVD: cardiovascular disease
- CVOT: cardiovascular outcomes trials
- DKD: diabetic kidney disease
- DLD: dyslipidemia
- DM: diabetes mellitus
- eGFR: estimated glomerular filtration rate
- ESRD: end stage renal disease

ABBREVIATIONS

- GDMT: guideline-directed medical therapy
- HFpEF: heart failure with preserved ejection fraction
- HFrEF: heart failure with reduced ejection fraction
- ► HHF: hospitalization for heart failure
- KCCQ: Kansas City Cardiomyopathy Questionnaire
- KDIGO: Kidney Disease Improving Global Outcomes
- LDL-C: low-density lipoprotein cholesterol
- MI: myocardial infarction

- MRA: mineralocorticoid receptor antagonist
- NSTEMI: non-ST-segment elevation myocardial infarction
- NT-proBNP: N terminal pro B-type natriuretic peptide
- NYHA: New York Heart Association
- SGLT2i: sodium-glucose cotransporter-2 inhibitors
- ► TIA: transient ischemic attack
- ► UA: unstable angina
- UACR: urinary albumin-to-creatinine ratio
- ► UTI: urinary tract infection

INTRODUCTION

HARRISON School of Pharmacy

- ► T2DM is associated with both micro- and macrovascular complications
 - 2-5-fold greater risk of developing HF
 - ▶ 45% of people with HF have DM
 - Leading cause of CKD and ESRD globally
 - ▶ 40% of people with CKD have concomitant DM
- HF and CKD are associated with a diminished quality of life and limited life expectancy
 - ► HF prevalence: 5.7 million
 - ► CKD prevalence: 37 million

Kidney Int 2020;98(4S):S1-S115. N Engl J Med 2020;383:1436-46. Curr Cardiol Rep 2021;23:59.

- SGLT2i MOA: inhibit SGLT2 in the proximal convoluted tubule to prevent glucose reabsorption and increase glucosuria
- In large-scale trials in people with T2DM, SGLT2i shown to reduce the risk of ASCVD events, HHF, and risk of serious adverse renal events
 - Glucose-lowering efficacy declines at lower eGFR rates, but CV benefits preserved even in renal impairment
 - Cardiorenal benefits cannot be explained by glucose-lowering action alone
 - Cardioprotective mechanisms not fully understood

Kidney Int 2020;98(4S):S1-S115. N Engl J Med 2020;383:1436-46. Curr Cardiol Rep 2021;23:59.

HOW DID WE GET HERE?

SGLT2i Trials Evaluating ASCVD Benefit						
Medication	Empagliflozin	Canagliflozin	Dapagliflozin	Ertugliflozin		
Trial	EMPA-REG Outcome	CANVAS	DECLARE-TIMI 58	VERTIS CV		
Patient population	Established ASCVD	Established ASCVD or	Established ASCVD or	Established ASVD		
(All T2DM)		≥50 years + >2 CV risk	multiple ASCVD risk			
		factors	factors			
Primary CV outcome	0.86	0.86	0.93	0.97		
(3 Point MACE)	(0.74-0.99)	(0.75-0.97)	(0.84-1.03)	(0.85-1.11)		
CV death	0.62	0.87	0.98	0.92		
	(0.49-0.77)	(0.72-1.06)	(0.82-1.17)	(0.77-1.11)		
Myocardial	0.87	0.89	0.89	1.04		
infarction	(0.70-1.09)	(0.73-1.09)	(0.77-1.01)	(0.86-1.26)		
Stroke	1.18	0.87	1.01	1.06		
	(0.89-1.56)	(0.74-1.01)	(0.84-1.21)	(0.82-1.37)		
All-cause mortality	0.68	0.87	0.93	0.93		
	(0.57-0.82)	(0.74-1.01)	(0.82-1.04)	(0.80-1.08)		
HF hospitalizations	0.65	0.67	0.73	0.70		
	(0.50-0.85)	(0.52-0.87)	(0.61-0.88)	(0.54-0.90)		
Renal outcome	0.61	0.73	0.53	0.81		
	(0.53-0.70)	(0.67-0.79)	(0.43-0.66)	(0.63-1.04)		

Outcomes reported as HR (95% CI)

N Engl J Med 2015;373:2117-128. N Engl J Med 2017;377:644-57. N Engl J Med 2019;380:347-57. N Engl J Med 2020;383:1425-35.

Eur J Heart Fail 2020;22:1495-1503.

SGLT2i Trials in HF

HARRISON School of Pharmac^{*} CLASSIFICATION AND STAGES OF HEART FAILURE

- ► Heart failure with reduced ejection fraction (HFrEF): EF \leq 40%
- Heart failure with preserved ejection fraction (HFpEF): EF >40%

ACC/AHA Stages of HF	NYHA Functional Classification
A: at high risk for HF, without structural heart disease or HF symptoms	I: no limitation of physical activity. Ordinary physical activity does not cause HF symptoms
B: structural heart disease, without s/s HF	II: slight limitation of physical activity. Comfortable at rest, but ordinary physical activity causes HF symptoms.
C: structural heart disease with prior/current HF symptoms	III: marked limitation of physical activity. Comfortable at rest, but less than ordinary physical activity causes HF symptoms.
D: refractory HF requiring specialized interventions	IV: unable to perform any activity without HF symptoms, or HF symptoms at rest.

J Am Coll Cardiol 2021;77:772-810.

DEFINE-HF

HARRISON School of Pharmacy

Methodology

- Patients:
 - ► EF ≤40%
 - ► NYHA Class II-III
 - eGFR \geq 30 mL/min/1.73m²
 - Elevated NT-proBNP or BNP
 - ► ±T2DM
- Intervention: dapagliflozin 10 mg/d vs. placebo
- Duration: 12 weeks

Results

- ► Baseline characteristics
 - 62 years; 72.5% male; 59.7%
 White; 37.9% Black; EF ~25%;
 ~62% T2DM
- ► NT-proBNP:
 - ▶ 1133 pg/dL vs. 1191 pg/dL
 - ▶ 0.95 (0.84-1.08)
- ► NT-proBNP reduction ≥20% or KCCQ improvement ≥5 points:
 - ▶ 61.5% vs. 50.4%
 - ▶ 1.8 (1.0-3.1), p=0.039

SGLT2I TRIALS IN HFREF- METHODOLOGY

Trial	DAPA-HF	EMPEROR-Reduced
Inclusion Criteria	NYHA II-IV + EF ≤40% + elevated NT-proBNP ± DM	NYHA II-IV + EF ≤40% + elevated NT-proBNP ± DM
Intervention	Dapagliflozin 10 mg/d (n=2373)	Empagliflozin 10 mg/d (n=1863)
Comparator	Placebo (n=2371)	Placebo (n=1867)
Median Follow-up	18.2 months	16 months
Primary Outcome	CV death or worsening HF (HHF or urgent visit requiring IV therapy)	CV death or HHF
Secondary and other Pre- specified Outcomes	CV death or HHF Total hospitalizations for HF and CV deaths Quality of life All-cause mortality Worsening renal function	HHF Total hospitalizations Rate of eGFR decline Quality of life All-cause mortality Composite renal outcome
		N Engl J Med 2020;383:1413-24. N Engl J Med 2019:1995-2008

SGLT2I TRIALS IN HFREF- BASELINE CHARACTERISTICS

[rial	DAPA-HF	EMPEROR-Reduced
Age (yr)	66.2	67.2
Female sex (%)	23.8	23.5
Race (%)		
White	70.0	71.1
Black	5.1	6.6
Asian	23.3	18.1
Other	1.6	4.2
NYHA Functional Class (%)		
I	67.7	75.1
II	31.5	24.4
V	0.8	0.5
.VEF (%)	31.2	27.7
Medical History (%)		
1HF	47.4	31.0
٩F	38.6	35.6
M	41.8	49.8
eGFR (mL/min/1.73m ²)	66.0	61.8
IF Therapy (%)		
Beta-blocker	96.0	94.7
Renin-angiotensin inhibitor	84.5	70.5
Sacubitril-valsartan	10.5	18.3

24

AUBURN

HAI Trial	DAPA-HF	EMPEROR-Reduced
^{L C} Primary Outcome	0.74 (0.65-0.85) NNT=21	0.75 (0.65-0.86) NNT=19
Select Secondary Outcomes		
CV death or HHF	0.75 (0.65-0.85)	NA
HHF	0.70 (0.59-0.83)*	0.70 (0.58-0.81)
CV Death	0.82 (0.69-0.98)*	0.92 (0.75-1.12)*
Mean slope of change in eGFR	NA	1.73 (1.10-2.37)
All-cause mortality	0.83 (0.71-0.97)*	0.92 (0.77-1.10)*
Renal outcome	Worsening renal function 0.71 (0.44-1.16)*	Composite renal outcome 0.50 (0.32-0.77)*
Total hospitalizations	For HF and CV death 0.75 (0.65-0.88)	For any cause 0.85 (0.75-0.95)*
Change in KCCQ	1.18 (1.11-1.26)	1.7 (0.5-3.0)*

Results reported as hazard ratio *Not included in testing hierarchy

N Engl J Med 2020;383:1413-24. N Engl J Med 2019;1995-2008.

SGLT2I IN HF: EMPERIAL SERIES

HARRISON School of Pharmacy

- Evaluated effects of empagliflozin on exercise ability and patient-reported outcomes in patients with both HFrEF and HFpEF, ± T2DM
- Included:
 - ▶ HFrEF (EF ≤40%, n=312)
 - ► HFpEF (EF>40%, n=315)
- Intervention: empagliflozin 10 mg/d vs. placebo
- Median follow-up: 12 weeks
- Primary endpoint: 6-minute walk test distance (6MWTD) change to week 12
- Select secondary endpoints:
 - KCCQ total symptom score
 - Chronic HF Questionnaire Self-Administered Standardized format (CHQ-SAS)

Eur Heart J 2021;42:711-4.

	Baseline	EMPERIAL-Reduced		EMPERIAL-Preserved	
	Characteristic	PBO (n=156)	Empagliflozin (n=156)	PBO (n=158)	Empagliflozin (n=157)
Δ	Age (yr)	70.0	69.0	75.0	74.0
<u> </u>	Female sex (%)	28.8	22.4	41.8	44.6
Scho	Race (%) White Black/AA Asian Other	85.3 11.5 1.3 1.3	83.3 15.4 0.6 0.6	85.4 12.0 1.3 1.3	87.3 10.2 1.6 0.6
	Median 6MWTD (min)	309.0	306.0	299.5	297.0
	Median KCCQ	68.8	68.8	68.2	64.6
	NYHA Class (%) II III	64.7 35.3	64.7 35.3	79.7 20.3	74.5 24.8
	DM (%)	64.1	55.8	47.5	54.8
	HF Medications (%) Beta-blockers ACEi/ARB ARNI MRA Loop diuretics Thiazide diuretics	94.2 59.0 34.0 55.8 89.1 15.4	 94.9 51.9 39.1 60.9 86.5 5.8 	89.2 75.9 3.8 31.6 66.5 22.8	89.2 73.2 3.2 35.0 77.1 18.5 Eur Heart J 2021;42:711-4

SGLT2I IN HF: EMPERIAL SERIES RESULTS

HARRISON School of Pharmacy

EMPERIAL-Reduced

- Primary endpoint (6MWTD)
 - ► Difference: -4.0 m
 - ▶ P-value: 0.42
- Secondary endpoints
 - ► KCCQ-TSS
 - ► Difference: 3.13
 - ► CHQ-SAS
 - ▶ Difference: 0.10

EMPERIAL-Preserved

- Primary endpoint (6MWTD)
 - ▶ Difference: 4.0 m
 - ▶ P-value: 0.37
- Secondary endpoints
 - ► KCCQ-TSS
 - ► Difference: 2.08
 - ► CHQ-SAS
 - ▶ Difference: -0.07

HARRISON SCHOOL OF PHARMACY SGLT2I IN ACUTE HEART FAILURE: SOLOIST-WHF

- Included: T2DM recently hospitalized for HF
- Intervention: sotagliflozin 200-400 mg/d (n=608) vs. placebo (n=614)
- Median follow-up: 9 months
- Primary endpoint: death from CV causes and hospitalizations/urgent visits for HF
- Select secondary endpoints:
 - ► Total number hospitalizations/urgent visits for HF
 - Death from CV causes
 - Death from any cause
 - ► Hospitalization for HF, nonfatal MI, and nonfatal stroke
 - Quality of life
 - Change in eGFR

SGLT2I IN ACUTE HEART FAILURE: SOLOIST-WHF BASELINE CHARACTERISTICS

- Age: 69 years
- ▶ Female sex: 32.6%
- Race or ethnic group
 - ▶ White: 93.3%
 - ▶ Black: 4.1%
 - ► Asian: 1.3%
 - ► Other/Unknown: 1.3%
- ▶ LVEF: 35%

- HF Therapy
 - ▶ Beta-blocker: 92.8%
 - ► ACEi: 41.8%
 - ► ARB: 40.8%
 - ► ARNI: 15.3%
 - ▶ MRA: 92.8%
 - ► Loop diuretic: 95.4%
 - Other diuretic: 10.9%

SGLT2I IN ACUTE HEART FAILURE: SOLOIST-WHF RESULTS

SCH	Endpoint	Sotagliflozin (n=608)	PBO (n=614)	HR or Difference	P Value
	Primary Endpoint	51.0%	76.3%	0.67 (0.52-0.85)	<0.001
	Secondary Endpoints in order of hierarchic	al testing			
	Total HHF/urgent HF visits	40.4%	63.9%	0.64 (0.49-0.83)	<0.001
	Death from CV causes	10.6%	12.5%	0.84 (0.58-1.22)	0.36
	Death from CV cause, HHF, nonfatal MI, nonfatal stroke	51.4%	71.0%	0.72 (0.56-0.92)	NR
	Death from CV causes, HHF and urgent HF visits, HF events during hospitalization	54.7%	80.6%	0.68 (0.57-0.86)	
	Death from any cause	13.5%	16.3%	0.82 (0.59-1.14)	
	Mean change in KCCQ score	17.7	13.6	4.1 (1.3-7.0)	
	Mean change eGFR (mL/min/1.73m ²)	-0.34	-0.18	-0.16 (-1.30-0.98)	

N Engl J Med 2020;384:117-28.

Ongoing Trials of SGLT21 in HF

	Study (Year)	Number of Patients	Study Population	Agent and dose	Comparator	Primary Endpoint
SCF	DETERMINE- Reduced (2021)	313	HFrEF	Dapagliflozin 10 mg/d	Placebo	6-minute walk test and KCCQ
	DETERMINE- Preserved (2021)	504	HFpEF	Dapagliflozin 10 mg/d	Placebo	6-minute walk and KCCQ
	EMPEROR- Preserved (2021)	5988	HFpEF	Empagliflozin 10 mg/d	Placebo	CV death or HF hospitalization
	DELIVER (2022)	6100	HFpEF	Dapagliflozin 10 mg/d	Placebo	HF event and CV death
	EMPULSE (2021)	530	Acute HF	Empagliflozin 10 mg/d	Placebo	All-cause death, HF event, and KCCQ
	DAPA-RESIST (2022)	120	Acute HF in patients with HFrEF, renal impairment, and diuretic resistance	Dapagliflozin 10 mg/d	Metolazone 5-10 mg/d	Diuretic effect based on weight
	DAPA-ACT TIMI (2023)	2400	Acute HF in patients with HFrEF	Dapagliflozin 10 mg/d	Placebo	CV death or worsening HF

Information available at clinicaltrials.gov

SGLT2i Trials in CKD

HARRISON

SCHOOL OF PHARMACY

DIAGNOSIS AND STAGING OF CKD

Prognosis of CKD by GFR and albuminuria category

				Persistent albuminuria categories Description and range			
				A1	A2	A3	
Prognosis of CKD by GFR and albuminuria categories: KDIGO 2012				Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol	
8 m²)	G1	Normal or high	≥90				
ber 1.7 3 Je	G2	Mildly decreased	60–89				
ן חוש/ור nd rang	G3a	Mildly to moderately decreased	45–59				
ories (n iption a	G3b	Moderately to severely decreased	30–44				
categ Descr	G4	Severely decreased	15–29				
GFR	G5	Kidney failure	<15				

Green, low risk (if no other markers of kidney disease, no CKD); yellow, moderately increased risk; orange, high risk; red, very high risk.

1.1: DEFINITION OF CKD

1.1.1: CKD is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health. (*Not Graded*)

Criteria for CKD (either of the following present for >3 months)

Markers of kidney damage (one or more)	Albuminuria (AER \geq 30 mg/24 hours; ACR \geq 30 mg/g [\geq 3 mg/mmol]) Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities detected by imaging History of kidney transplantation
Decreased GFR	GFR $<$ 60 ml/min/1.73 m ² (GFR categories G3a-G5)

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

Kidney Int 2020;98(4S):S1-S115.

SGLT2I TRIALS IN CKD- METHODOLOGY

Trial CREDENCE **DAPA-CKD SCHO** Inclusion Criteria T2DM, A1C 6.5%-12.0%, eGFR 30 to Adults ±T2DM with eGFR 25-75 <90 mL/min/1.73m², UACR >300-5000 mL/min/1.73m² + UACR 200-5000 mg/g mg/g Intervention Canagliflozin 100 mg/d Dapagliflozin 10 mg/d (n=2202)(n=2152)Comparator Placebo Placebo (n=2199)(n=2152)**Median Follow-up** 2.62 years 2.4 years **Primary Outcome** ESRD, doubling of SCr from baseline, Decline of \geq 50% eGFR, onset of ESRD, death from renal or CV causes death from renal or CV causes Secondary Outcomes • HHF or death from CV causes • Decline of \geq 50% eGFR, onset of CV death, MI, stroke ESRD, death from renal causes HHF or death from CV causes HHF ESRD, doubling SCr, renal death Death from any cause CV death Death from any cause CV death, MI, stroke, N Engl J Med 2020;383:1436-46. hospitalization for HF or UA N Engl J Med 2019;380:2295-306

SGLT2I TRIALS IN CKD- BASELINE CHARACTERISTICS

UNIVERSITY HARRISON SCHOOL OF PHARMACY

Irial		DAPA-CKD
Age (yr)	62.9	61.8
Female sex (%)	34.6	32.9
Race (%)		
White	67.5	52.2
Black	5.1	4.8
Asian	19.3	34.8
Other	8.1	8.1
BP (mm Hg)		
SBP	139.8	136.7
DBP	78.2	77.5
eGFR (mL/min/1.73m ²)	56.3	43.2
UACR (mg/g)	923	965
T2DM (%)	100	67.6
CVD (%)	50.5	37.8
HF (%)	14.9	10.9
CKD Medications (%)		
RAAS Inhibitor	>99.9	98.4
Diuretic	46.6	43.1

N Engl J Med 2020;383:1436-46. N Engl J Med 2019;380:2295-306.

UNIVERSITY

І Scноо	Trial	CREDENCE	DAPA-CKD
	Primary Outcome	0.70 (0.59-0.82) NNT=23	0.61 (0.51-0.72) NNT=19
	Secondary Outcomes		
	Decline of ≥50% eGFR, onset of ESRD, death from renal causes	NA	0.56 (0.45-0.68)
	HHF or death from CV causes	0.69 (0.57-0.83)	0.71 (0.55-0.92)
	CV death, MI, stroke	0.80 (0.67-0.95)	NA
	ННЕ	0.61 (0.47-0.80)	NA
	ESRD, doubling SCr, renal death	0.66 (0.53-0.81)	NA
	Death from any cause	0.83 (0.68-1.02)	0.69 (0.53-0.88)
	CV death, MI, stroke, hospitalization for HF or UA	0.74 (0.63-0.86)	NA
			N Engl Med 2020:383:143

N Engl J Med 2020;383:1436-46. N Engl J Med 2019;380:2295-306.

ONGOING TRIALS OF SGLT2I IN CKD

Study (Year)	Number of Patients	Study Population	Agent and dose	Comparator	Primary Endpoint
EMPA-Kidney (2022)	6609	CKD (without T2DM or ASCVD	Empagliflozin 10 mg/d	Placebo	Kidney disease progression or CV death
ZENITH-CKD (2022)	660	CKD ±DM	Dapagliflozin 10 mg/d	Zibotentan Placebo	Change in UACR
DECODED (2026)	2500	ESRD + ASCVD	Dapagliflozin 10 mg/d		CV death, MI, or ischemic stroke

HARRISON SCHOOL OF PHARMACY META-ANALYSIS OF CV AND RENAL OUTCOMES

Population	All-cause mortality	CV mortality	HHF	MI	Composite kidney outcome
Overall	0.84	0.84	0.69	0.91	0.62
	(0.78-0.91)	(0.76-0.93)	(0.64-0.74)	(0.84-0.99)	(0.56-0.70)
T2DM + HF	0.79	0.82	0.71	0.92	0.63
	(0.69-0.91)	(0.70-0.96)	(0.61-0.83)	(0.69-1.21)	(0.45-0.89)
T2DM w/o HF	0.84	0.83	0.71	0.88	0.52
	(0.68-1.03)	(0.61-1.11)	(0.60-0.83)	(0.78-1.00)	(0.43-0.63)
HF ± T2DM	0.85	0.86	0.69	0.92	0.58
	(0.77-0.94)	(0.77-0.97)	(0.62-0.76)	(0.69-1.21)	(0.44-0.76)
T2DM + CKD	0.82	0.84	0.61	0.72	0.68
	(0.67-1.00)	(0.68-1.03)	(0.48-0.77)	(0.54-0.97)	(0.77-0.94)

Results reported as HR (95% confidence interval)

Am Heart J 2021;232:10-22.

Guideline Recommendations for SGLT2i Use in HF and CKD

PATIENT CASE 1

HARRISON School of Pharmacy

B.H. is a 65-year-old female with a past medical history significant for HTN, MI, and HFrEF (EF = 30%). She is currently taking sacubitril/valsartan 97/103 mg PO twice daily, metoprolol succinate 100 mg PO daily, furosemide 40 mg daily, atorvastatin 40 mg PO daily, and aspirin 81 mg PO daily. She has no s/s volume overload at today's visit, and her labs are within normal limits (eGFR 65 mL/min/1.73m²).

Vitals: BP 128/70 mm Hg, HR 60 bpm, weight 80 kg, BMI 29 kg/m²

- 1. Is this patient a candidate for SGLT2i therapy at this time?
- 2. If so, which SGLT2i would be reasonable to initiate?
- 3. What if the patient had HFpEF?

2021 ACC EXPERT CONSENSUS DECISION PATHWAY

- HARRISON School of Pharmacy
 - Indication
 - ▶ HFrEF (EF \leq 40%) with or without DM
 - ► NYHA Class II-IV
 - Administered in conjunction with background GDMT for HF
 - Select dapagliflozin or empagliflozin
 - ▶ 10 mg/d
 - Starting and target dose
 - ► Ensure eGFR ≥30 mL/min/1.73m² for dapagliflozin
 - Ensure eGFR \geq 20 mL/min/1.73m² for empagliflozin

2021 ACC EXPERT CONSENSUS DECISION PATHWAY: CONTRAINDICATIONS AND CAUTIONS FOR SGLT2I USE

HARRISON School of Pharmacy

C) SGLT2 Inhibitors	
Contraindications	Cautions
 Not approved for use in patients with type I diabetes due to increased risk of diabetic ketoacidosis Known hypersensitivity to drug Lactation (no data) On dialysis 	 For HF care, dapagliflozin, eGFR <30 mL/min/1.73 m² For HF care, empagliflozin, eGFR <20 mL/min/1.73 m² Pregnancy Increased risk of mycotic genital infections May contribute to volume depletion. Consider altering diuretic dose if applicable Ketoacidosis in patients with diabetes: Temporary discontinuation before scheduled surgery is recommended to avoid potential risk for ketoacidosis Assess patients who present with signs and symptoms of metabolic acidosis for ketoacidosis, regardless of blood glucose level Acute kidney injury and impairment in renal function: consider temporarily discontinuing in settings of reduced oral intake or fluid losses Urosepsis and pyelonephritis: evaluate patients for signs and symptoms of urinary tract infections and treat promptly, if indicated Necrotizing fasciitis of the perineum (Fournier's gangrene): rare, serious, life-threatening cases have occurred in both female and male patients; assess patients presenting with pain or tenderness, erythema, or swelling in the genital or perineal area, along with fever or malaise

J Am Coll Cardiol 2021;77:772-810.

K.A.is a 60-year-old male with CKD, HTN, and T2DM. He is currently taking lisinopril 40 mg PO daily, amlodipine 10 mg PO daily, chlorthalidone 25 mg PO daily, and metformin 1000 mg twice daily.

Vitals: BP 136/82 mm Hg, HR 70 bpm, weight 95 kg, BMI 33 kg/m²

Pertinent labs: A1C 8%, UACR 300 mg/g (confirmed on repeat testing), and GFR 35 mL/min/1.73m²; all other labs are within normal limits.

- 1. Should SGLT2i therapy be initiated in this patient?
- 2. If so, which SGLT2i would be reasonable to initiate?
- 3. What if the patient did NOT have albuminuria?

SGLT2i Options per KDIGO:

Canagliflozin 100-300 mg/d Dapagliflozin 5-10 mg/d Empagliflozin 10-25 mg/d

2020 KDIGO GUIDELINE FOR DM MANAGEMENT IN CKD IF ALREADY ON ANTIHYPERGLYCEMIC AGENTS

Kidney Int 2020;98(4S):S1-S115.

2020 KDIGO GUIDELINE FOR DM MANAGEMENT IN CKD ADDITIONAL RECOMMENDATIONS

- The choice of an SGLT2i should prioritize agents with documented kidney or CV benefits and take eGFR into account.
- It is reasonable to withhold SGLT2i during times of prolonged fasting, surgery, or critical medical illness (when patients may be at greater risk for ketosis).
- If a patient is at risk for hypovolemia, consider decreasing thiazide or loop diuretic dosages before commencement of SGLT2i treatment, advise patients about symptoms of volume depletion and low blood pressure, and follow up on volume status after drug initiation.

Kidney Int 2020;98(4S):S1-S115.

2020 KDIGO GUIDELINE FOR DM MANAGEMENT IN CKD ADDITIONAL RECOMMENDATIONS

- A reversible decrease in the eGFR with commencement of SGLT2i treatment may occur and is generally not an indication to discontinue therapy.
- Once an SGLT2i is initiated, it is reasonable to continue an SGLT2i even if the eGFR falls below 30 ml/min per 1.73 m², unless it is not tolerated or kidney replacement therapy is initiated.
- SGLT2i have not been adequately studied in kidney transplant recipients, who may benefit from SGLT2i treatment, but are immunosuppressed and potentially at increased risk for infections; therefore, the recommendation to use SGLT2i does not apply to kidney transplant recipients.

	SGLT2i Dose range	eGFR 30 to <60 mL/min/1.73m ²	eGFR <30 mL/min/1.73m ²
1 Sch	Canagliflozin 100-300 mg/d	100 mg/d	UACR >300: if previously on 100 mg/d, may continue. UACR ≤300: manufacturer labeling does not recommend use, but some experts use 100 mg/d off label.
	Dapagliflozin 5-10 mg/d	No adjustment if eGFR ≥45. 30 to <45: DM: do not recommend use HF: no adjustment needed DKD/CKD: no adjustment needed	DM: use is CI HF: U.S. manufacturer states insufficient evidence to support dosage recommendation. DKD/CKD: no adjustment if GFR ≥25; not studied in patients with eGFR <25.
	Empagliflozin 10-25 mg/dU.S. manufacturer recommends to not initiate if eGFR<45.Should not be used for glucose benefit if eGFR<45.		Manufacturer states CI. In patients previously on empagliflozin, some experts use off label at 10 mg/d for DKD. Renal and cardiac benefits shown to eGFR ≥20.
	Ertugliflozin 5-15 mg/d	Not recommended for initiation or continued use	CI

- Mycotic genital infections
 - ► Associated with increased risk (OR 3.95, 95% CI 3.01-5.18)
 - Most mild and responded to standard therapy
 - Rarely led to treatment d/c
 - Evaluate patients who c/o groin redness, swelling, and pain
- Euglycemic ketoacidosis
 - ► Associated with increased risk (OR 2.86, 95% CI 1.39-5.86)
 - Measuring beta-hydroxybutyrate recommended if DKA diagnosis is in doubt
 - Stop if DKA diagnosed and 24 hours before elective surgery
 - Avoid alcohol, prolonged fasting, very low carb or ketogenic diets while on therapy

Curr Cardiol Rep 2021;23:59. Am Heart J 2021;232:10-22

SAFETY OF SGLT2

HARRISON School of Pharmacy

- Hypoglycemia
 - ▶ Not associated with greater risk (OR 0.92; 95% CI 0.84-1.01)
- Amputation
 - ▶ Not associated with greater risk overall (OR 1.25, 95% CI 0.97-1.62)
 - Canagliflozin is associated with higher risk
 - D/C if infection (including osteomyelitis), new pain/tenderness, or sores/ulcers involving lower limbs
 - Consider risk factors, counsel patients on preventative foot care
- Bone fracture
 - ▶ Not associated with greater risk overall (HR 1.04, 95% CI 0.91-1.18)
- Hypotension
 - Assess volume status prior to initiation
 - Continue to monitor BP while on therapy

Curr Cardiol Rep 2021;23:59. Am Heart J 2021;232:10-22. Diabetes Ther 2021;12:55-70.

SUMMARY COMPARISON OF SGLT2I USE

Medication	ASCVD	HF	CKD
Canagliflozin (Invokana)	X (FDA Indication)	X (Off label, data from CVOTs)	X (FDA Indication)
Dapagliflozin (Farxiga)		X (FDA Indication)	X (FDA Indication)
Empagliflozin (Jardiance)	X (FDA Indication)	X (Off label, but primary HF data)	X (Off label, data from DM CVOTs)
Ertugliflozin (Steglatro)		X (Off label, data from CVOTs)	

HARRISON SCHOOL OF PHARMACY

SUMMARY AND TAKE HOME POINTS

- SGLT2i therapy has been proven to reduce HHF and progression of CKD
- People with HF or CKD should be evaluated for initiation of SGLT2i therapy
 - ► HF: with or without concomitant T2DM
 - ► CKD: with concomitant T2DM
- Therapy should include GDMT prior to initiation of SGLT2i
- Medication selection and dosing depends on medication, indication, and eGFR

Thank you for attending this AUHSOP continuing education program. The Attendance Code for this program is ______. Participants must enter the attendance code to advance to the program evaluation page within the course.

Please direct any questions to: <u>hsopce@auburn.edu</u>

- 1. Abraham WT, Lindenfeld J, Ponikowski P, et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction with and without type 2 diabetes. Eur Heart J 2021;42:711-4.
- 2. American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021;44(Supplement 1): S125-S150.
- 3. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med 2020;384:117-28.
- 4. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med 2020;383:1425-35.
- 5. Garla VV, Butler J, Lien LF. SGLT-2 Inhibitors in Heart Failure: Guide for Prescribing and Future Perspectives. Curr Cardiol Rep 2021;23:59.
- 6. Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020;383:1436-46.
- 7. Kidney Disease Improving Global Outcomes (KDIGO). 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2020;98(4S):S1-S115.
- 8. Maddox TM, Januzzi JL, Allen LA, et al. 2021 Update to the 2017 ACC Expert Consensus Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure with Reduced Ejection Fraction. J Am Coll Cardiol 2021;77:772-810.

- 9. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019;1995-2008.
- 10. Nassif ME, Windsor SL, Tang F. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients with Heart Failure with Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation 2019;140:1463-76.
- 11. Neal B, Perkovic V, Mahaffey KW. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017;377:644-57.
- 12. Packer M, Butler AJ, Filippatos BG, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020;383:1413-24.
- 13. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019;380:2295-306.
- 14. Petrie MC, Verma S, Docherty KF, et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients with Heart Failure With and Without Diabetes. JAMA 2020;323:1353-68.
- 15. Salah HM, Al'Aref SJ, Khan MS, et al. Effects of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes- Systematic review and meta-analysis of randomized placebo-controlled trials. Am Heart J 2021;232:10-22.

- 16. Seferovic PM, Fragasso G, Petrie M, et al. Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2020;22:1495-1503.
- 17. Williams DM, Nawaz A, Evans M. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors: Are They All the Same? A Narrative Review of Cardiovascular Outcome Trials. Diabetes Ther 2021;12:55-70.
- 18. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019;380:347-57.
- 19. Wojcik C, Wardern BA. Mechanisms and Evidence for Heart Failure Benefits from SGLT2 Inhibitors. Curr Cardiol Rep 21, 130 (2019). https://doi.org/10.1007/s11886-019-1219-4.
- 20. Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. JACC 2020;75:422-34.
- 21. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015;373:2117-128.